Schur convexity of Stolarsky's extended mean values

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Necessary and Sufficient Conditions for the Schur Harmonic Convexity or Concavity of the Extended Mean Values

In this paper, we prove that the extended values E(r, s;x, y) are Schur harmonic convex (or concave, respectively) with respect to (x, y) ∈ (0,∞) × (0,∞) if and only if (r, s) ∈ {(r, s) : s ≥ −1, s ≥ r, s+ r + 3 ≥ 0} ∪ {(r, s) : r ≥ −1, r ≥ s, s+r+3 ≥ 0} (or {(r, s) : s ≤ −1, r ≤ −1, s+r+3 ≤ 0}, respectively).

متن کامل

Research Article Schur-Convexity of Two Types of One-Parameter Mean Values in n Variables

and let dμ= du1, . . . ,dun−1 be the differential of the volume in En−1. The weighted arithmetic mean A(x,u) and the power mean Mr(x,u) of order r with respect to the numbers x1,x2, . . . ,xn and the positive weights u1,u2, . . . ,un with ∑n i=1ui = 1 are defined, respectively, as A(x,u) = ∑ni=1uixi, Mr(x,u) = (∑ni=1uixr i ) for r =0, and M0(x,u)= ∏n i=1x ui i . For u=(1/n,1/n, . . . ,1/n), we ...

متن کامل

The Schur-convexity of the mean of a convex function

The Schur-convexity at the upper and lower limits of the integral for the mean of a convex function is researched. As applications, a form with a parameter of Stolarsky’s mean is obtained and a relevant double inequality that is an extension of a known inequality is established. © 2009 Elsevier Ltd. All rights reserved.

متن کامل

The Schur Convexity for the Generalized Muirhead Mean

For x,y > 0 , a,b ∈ R with a+ b = 0 , the generalized Muirhead mean is defined by M(a,b;x,y) = ( xayb+xbya 2 ) 1 a+b . In this paper, we prove that M(a,b;x,y) is Schur convex with respect to (x,y)∈ (0,∞)×(0,∞) if and only if (a,b)∈ {(a,b)∈R2 : (a−b)2 a+b > 0 & ab 0} and Schur concave with respect to (x,y) ∈ (0,∞)×(0,∞) if and only if (a,b)∈ {(a,b)∈R+ : (a−b)2 a+b & (a,b) = (0,0)}∪{(a,b) ∈ R2 : ...

متن کامل

Schur-convexity, Schur-geometric and Schur-harmonic convexity for a composite function of complete symmetric function

In this paper, using the properties of Schur-convex function, Schur-geometrically convex function and Schur-harmonically convex function, we provide much simpler proofs of the Schur-convexity, Schur-geometric convexity and Schur-harmonic convexity for a composite function of the complete symmetric function.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Inequalities

سال: 2016

ISSN: 1846-579X

DOI: 10.7153/jmi-10-59